1. HOME
  2. 業績
  3. 国際論文
  4. Dust Pileup at the Dead-zone Inner Edge and Implications for the Disk Shadow

業績

Results

国際論文

Dust Pileup at the Dead-zone Inner Edge and Implications for the Disk Shadow

Dust Pileup at the Dead-zone Inner Edge and Implications for the Disk Shadow
 
Ueda, Takahiro; Flock, Mario; Okuzumi, Satoshi

Abstract
We perform simulations of the dust and gas disk evolution to investigate the observational features of a dust pileup at the dead-zone inner edge. We show that the total mass of accumulated dust particles is sensitive to the turbulence strength in the dead zone, α dead, because of the combined effect of turbulence-induced particle fragmentation (which suppresses particle radial drift) and turbulent diffusion. For a typical critical fragmentation velocity of silicate dust particles of 1 m s-1, the stress-to-pressure ratio α dead needs to be lower than 3 × 10-4 for dust trapping to operate. The obtained dust distribution is postprocessed using the radiative transfer code RADMC-3D to simulate infrared scattered-light images of the inner part of protoplanetary disks with a dust pileup. We find that a dust pileup at the dead-zone inner edge, if present, casts a shadow extending out to ̃10 au. In the shadowed region the temperature significantly drops, which in some cases yields even multiple water snow lines. We also find that even without a dust pileup at the dead-zone inner edge, the disk surface can become thermally unstable, and the excited waves can naturally produce shadows and ring-like structures in observed images. This mechanism might account for the ring-like structures seen in the scattered-light images of some disks, such as the TW Hya disk.

DOI: 10.3847/1538-4357/aaf3a1